π-Base
Explore
Spaces
Properties
Theorems
Advanced
Contribute
Help
Theorems
Id
If
Then
Description
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
∧
T11
T12
T13
T14
T15
T16
T17
T18
T19
∧
T20
T21
T22
∧
T23
∧
T24
∧
T25
T26
∧
T27
∧
T28
∧
∧
T29
T30
∧
T31
∧
∧
T32
T33
T34
T35
T36
T37
∧
T38
T39
T40
T41
¬
T42
T43
∧
T44
T45
∧
T46
T47
T48
T49
T50
∧
T51
T52
∧
¬
T53
∧
T54
T55
T56
T57
T58
T59
T60
∧
T61
∧
T62
∧
T63
T64
T65
∧
T66
T67
T68
T69
T70
T71
T72
T73
∧
T74
T75
∧
¬
T76
T77
T78
T79
T80
∧
¬
T81
∧
T82
T83
∧ ¬
¬
T84
T85
T86
T87
T88
∧
¬
T89
∧ ¬
¬
T90
T91
∧
T92
T93
T94
∧
¬
T95
∧
T96
T97
∧
T98
T99
∧
T100
T101
∧
T102
T103
T104
T105
∧
T106
∧
T107
∧
T108
∧
T109
∧
T110
∧
T111
∧
T112
T113
T114
T115
T116
T117
∧
T118
T119
T120
T121
T122
T123
∧
T124
∧
T125
∧
T126
T127
∧
∧
∧
T128
T129
T130
T131
∧
T132
∧
T133
T134
∧ ¬
¬
T135
T136
∧
T137
T138
¬
T139
T140
T141
T142
∧
T143
T144
T145
∧
T146
T147
T148
∧
T149
T150
∧
T151
∧
T152
T153
∧
T154
T155
T156
T157
T158
¬
T159
∧ ¬
T160
T161
T162
T163
T164
∧
T165
T166
T167
∧
T168
T169
T170
∧
T171
∧
¬
T172
T173
T174
T175
∧
T176
T177
T178
T179
∧
∧
T180
T181
T182
T183
T184
T185
T186
T187
T188
∧
T189
T190
T191
¬
T192
∧
T193
T194
T195
T196
∧
T197
∧
T198
T199
T200
T201
∧
T202
∧
∧
T203
∧
T204
T205
T206
T207
T208
∧
¬
T209
∧
T210
∧
T211
∧
T212
∧
T213
T214
T215
T216
T217
∧
T218
T219
∧
T220
T221
T222
T223
∧
T224
∧
T225
∧
T226
T227
T228
T229
T230
∧
T231
T232
∧
T233
∧
T234
T235
∧
T236
∧
T237
T238
T239
∧
∧
∧
T240
∧
T241
T242
T243
T244
T245
T246
∧
T247
∧
¬
T248
¬
T249
¬
T250
¬
T251
T252
T253
∧
¬
T254
T255
∧
T256
T257
∧
T258
∧
T259
T260
T261
∧
T262
∧
T263
∧
T264
T265
∧
T266
T267
∧
T268
T269
∧
∧
T270
T271
T272
T273
T274
T275
∧
∧
T276
T277
∧
T278
∧
T279
∧
T280
∧
T281
T282
T283
∧
T284
T285
T286
T287
T288
∧
T289
T290
T291
∧
T292
∧
∧
T293
T294
∧
T295
¬
T296
T297
T298
∧
T299
T300
∧
T301
∧
T302
∧
∧
T303
∧
T304
∧
T305
T306
∧ ¬
T307
∧
T308
∧
∧
¬
T309
∧
T310
T311
T312
∧
T313
T314
¬
T315
T316
T317
T318
∧
T319
∧ ¬
∧
T320
T321
T322
∧
∧
T323
T324
T325
T326
T327
T328
T329
T330
T331
∧
T332
T333
T334
∧
T335
T336
T337
T338
T339
T340
T341
T342
T343
T344
∧
T345
T346
¬
T347
T348
∧
T349
T350
T351
∧
T352
T353
T354
T355
T356
T357
T358
T359
T360
T361
T362
T363
∧
T364
T365
T366
T367
T368
T369
T370
T371
T372
T373
T374
∧
∧
T375
T376
∧
T377
∧
T378
∧
T379
∧
T380
∧
T381
∧
T382
∧
∧
T383
T384
∧
T385
T386
∧
T387
∧
T388
T389
∧
T390
T391
¬
∧ ¬
¬
T392
∧
T393
∧
T394
∧
T395
∧
∧
T396
∧
T397
∧
∧
T398
∧
∧
T399
∧
∧
T400
∧
T401
T402
∧
T403
∧
T404
∧
∧
T405
∧
∧
T406
∧
T407
T408
T409
∧
T410
T411
∧
T412
T413
∧
T414
T415
∧
T416
∧
T417
∧
T418
∧
T419
T420
T421
∧
T422
∧
¬
T423
∧
T424
T425
T426
∧
T427
∧
T428
T429
∧ ¬
∧ ¬
T430
T431
¬
T432
∧
∧
T433
∧ ¬
T434
∧
T435
∧
T436
∧
T437
T438
∧
T439
∧
T440
T441
T442
∧
T443
T444
∧
¬
T445
∧
∧
∧ ¬
T446
¬
T447
T448
T449
∧
T450
T451
∧ ¬
T453
∧
T454
T455
¬
T456
∧ ¬
T457
T458
T459
T460
T461
T462
∧
∧
T463
∧
T464
∧
T465
∧
T466
∧
T467
T468
∧
T469
T470
∧
∧ ¬
T471
∧
T472
T473
T474
T475
T476
∧
∧
T477
T478
T479
T480
∧
∧
T481
T482
T483
T484
T485
T486
∧
∧
∧
T487
∧
∧ ¬
¬
T488
∧
T489
T490
T491
T492
T493
∧
T494
∧
T495
∧
T496
∧
T497
∧
T498
∧
T499
∧
T500
T501
∧
T502
∧
T503
∧
∧
T504
T505
∧
T506
T507
T508
∧
∧
∧
T509
∧
T510
∧
T511
T512
∧
T513
T514
∧
∧
T515
∧
T516
∧
T517
∧
T518
∧
T519
T520
T521
T522
∧
T523
∧
T524
∧ ¬
∧ ¬
¬
T525
∧
T526
∧
T527
T528
∧
T529
∧
∧
T530
∧
T531
T532
T533
∧
∧
T534
∧
T535
T536
∧
T537
∧
T538
∧
T539
∧
T540
∧
T541
T542
T543
T544
T545
∧
T546
T547
T548
∧
T549
T550
∧
T551
∧
∧ ¬
T552
∧
T553
T554
∧
∧
∧
T555
∧
∧
¬
T556
∧
∧ ¬
T557
∧
∧
T559
∧
T560
T561
T562
T563
T564
T565
T566
∧
T567
∧
T568
∧
T569
T580
∧
T581
∧
∧
T582
∧
∧
T583
T584
∧ ¬
T585
¬
T586
T587
T589
T590
T591
T592
T593
T594
∧
∧ ¬
T595
∧
T596
∧
T597
∧
T598
T599
T600
T601
T602
∧
∧ ¬
T608
T609
∧
∧
T610
T612
∧
T613