π-Base
Explore
Spaces
Properties
Theorems
Questions
Advanced
Contribute
Help
Property
P000136
Anticompact
Also known as:
Compact subsets are finite
Every compact subset of the space is finite.
Show markdown
Theorems
Spaces
References
Id
If
Then
T22
Anticompact
∧
Countable
Has a countable
k
k
k
-network
T222
Countable sets are discrete
Anticompact
T291
Anticompact
∧
Countable
Hemicompact
T292
Anticompact
∧
k
1
k_1
k
1
-space
Locally finite
T293
Locally finite
Anticompact
T303
Anticompact
∧
Compact
Finite
T304
Anticompact
∧
σ
\sigma
σ
-compact
Countable
T318
Anticompact
∧
T
1
T_1
T
1
k
1
k_1
k
1
-Hausdorff
T377
Anticompact
∧
ω
\omega
ω
-Lindelöf
k
k
k
-Lindelöf
T378
Anticompact
∧
ω
\omega
ω
-Menger
k
k
k
-Menger
T379
Anticompact
∧
Strategically Rothberger
Strategically
k
k
k
-Rothberger
T380
Anticompact
∧
ω
\omega
ω
-Rothberger
k
k
k
-Rothberger
T413
Anticompact
∧
T
1
T_1
T
1
Sequentially discrete
T568
Door
∧
Hyperconnected
Anticompact
T678
Anticompact
∧
Has a
σ
\sigma
σ
-locally finite network
Has a
σ
\sigma
σ
-locally finite
k
k
k
-network
T700
Door
∧ ¬
Anticompact
Almost discrete