Space S000081

Alexandroff plank

The set [0,ω1]×[1,1][0,\omega_1] \times [-1,1] with topology generated by adding in all sets of the form U(α,n)={(ω1,0)}(α,ω1]×(0,1n)U(\alpha, n) = \{(\omega_1,0)\} \cup (\alpha, \omega_1] \times (0,\frac{1}{n}) to its usual product topology.

Defined as counterexample #88 ("Alexandroff Plank") in DOI 10.1007/978-1-4612-6290-9.

Alexandroff plank is a counterexample to the converse of 2 theorems
Id If Then
T114 T312T_{3 \frac{1}{2}} Functionally Hausdorff
T155 Regular Semiregular